Муниципальное автономное дошкольное образовательное учреждение
комбинированного вида города Тюмени

Математика: деление и умножение в столбик. Как объяснить ребенку деление столбиком 4 класс


Деление столбиком на двузначное число

Деление столбиком на двузначное, трехзначное числоДеление столбиком или, правильнее сказать, письменный прием деления уголком, школьники проходят уже в третьем классе начальной школы, но зачастую этой теме уделяется так мало внимания, что к 9-11 классу не все ученики могут им свободно пользоваться. Деление столбиком на двузначное число проходят в 4 классе, как и деление на трехзначное число, а далее этот прием используется только как вспомогательный при решении каких-либо уравнений или нахождении значения выражения.

Очевидно, что уделив делению столбиком больше внимания, чем заложено в школьной программе, ребенок облегчит себе выполнение заданий по математике вплоть до 11 класса. А для этого нужно немногое - понять тему и позаниматься, порешать, держа алгоритм в голове, довести навык вычисления до автоматизма.

Алгоритм деления столбиком на двузначное число

Как и при делении на однозначное число, будем последовательно переходить от деления более крупных счетных единиц к делению более мелких единиц.

1. Находим первое неполное делимое. Это число, которое делится на делитель с получением числа больше или равного 1. Это значит, что первое неполное делимое всегда больше делителя. При делении на двузначное число в первом неполном делимом минимум 2 знака. 

           Примеры        768:24. Первое неполное делимое 76                                265:53  26 меньше 53, значит не подходит. Нужно добавить следующую цифру (5). Первое неполное делимое 265.

2. Определяем количество цифр в частном. Для определения числа цифр в частном следует помнить, что неполному делимому соответствует одна цифра частного, а всем остальным цифрам делимого — еще по одной цифре частного.

           Примеры       768:24. Первое неполное делимое 76. Ему соответствует 1 цифра частного. После первого неполного делителя есть еще одна цифра. Значит в частном будет всего 2 цифры.                                265:53. Первое неполное делимое 265. Оно даст 1 цифру частного. Больше в делимом цифр нет. Значит в частном будет всего 1 цифра.                               15344:56. Первое неполное делимое 153, а после него еще 2 цифры. Значит в частном будет всего 3 цифры.

3. Находим цифры в каждом разряде частного. Сначала найдем первую цифру частного. Подбираем такое целое число, чтобы при умножении его на наш делитель получилось число, максимально приближенное к первому неполному делимому. Цифру частного записываем под уголок, а значение произведения вычитаем столбиком из неполного делителя. Записываем остаток. Проверяем, что он меньше делителя.

Затем находим вторую цифру частного. Переписываем в строку с остатком цифру, следующую за первым неполным делителем в делимом. Полученное неполное делимое снова делим на делитель и так находим каждое последующее число частного, пока не закончатся цифры делителя.

4. Находим остаток (если есть).

Если цифры частного закончились и получился остаток 0, то деление выполнено без остатка. В ином случае значение частного записывается с остатком.

Так же выполняется деление на любое многозначное число (трехзначное, четырехзначное и т. д.)

Разбор примеров на деление столбиком на двузначное число

Сначала рассмотрим простые случаи деления, когда в частном получается однозначное число.

- Найдем значение частного чисел 265 и 53.

Первое неполное делимое 265. Больше в делимом цифр нет. Значит в частном будет однозначное число.

  

Чтобы было легче подобрать цифру частного, разделим 265 не на 53, а на близкое круглое число 50. Для этого 265 разделим на 10, будет 26 (остаток 5). И 26 разделим на 5, будет 5 (остаток 1). Цифру 5 нельзя сразу записывать в частном, поскольку это пробная цифра. Сначала нужно проверить, подойдет ли она. Умножим 53*5=265. Мы видим, что цифра 5 подошла. И теперь можем ее записать в частном под уголок. 265-265=0. Деление выполнено без остатка.

Значение частного чисел 265 и 53 равно 5.

Иногда при делении пробная цифра частного не подходит, и тогда ее нужно менять.

- Найдем значение частного чисел 184 и 23.

В частном будет однозначное число. 

Чтобы было легче подобрать цифру частного, разделим 184 не на 23, а на 20. Для этого разделим 184 на 10, будет 18 (остаток 4). И 18 разделим на 2, будет 9. 9 – это пробная цифра, мы ее сразу писать в частном не будем, а проверим, подойдет ли она. Умножим 23*9=207. 207 больше, чем 184. Мы видим, что цифра 9 не подходит. В частном будет меньше 9. Попробуем, подойдет ли цифра 8. Умножим 23*8=184. Мы видим, что цифра 8 подходит. Можем ее записать в частном. 184-184=0. Деление выполнено без остатка.

Значение частного чисел 184 и 23 равно 8.

Рассмотрим более сложные случаи деления.

- Найдем значение частного чисел 768 и 24.

Первое неполное делимое – 76 десятков. Значит, в частном будут 2 цифры.

Определим первую цифру частного. Разделим 76 на 24. Чтобы легче было подобрать цифру частного, разделим 76 не на 24, а на 20. То есть нужно 76 разделить на 10, будет 7 (остаток 6). И 7 разделим на 2, получится 3 (остаток 1). 3 – это пробная цифра частного. Сначала проверим, подойдет ли она. Умножим 24*3=72 . 76-72=4. Остаток меньше делителя. Значит, цифра 3 подошла и теперь мы ее можем записать на месте десятков частного. 72 пишем под первым неполным делимым, между ними ставим знак минус, под чертой записываем остаток.

Продолжим деление. Перепишем в строку с остатком цифру 8, следующую за первым неполным делимым. Получим следующее неполное делимое – 48 единиц. Разделим 48 на 24. Чтобы было легче подобрать цифру частного, разделим 48 не на 24, а на 20. То есть разделим 48 на 10, будет 4 (остаток 8). И 4 разделим на 2, будет 2. Это пробная цифра частного. Мы должны сначала проверить, подойдет ли она. Умножим 24*2=48. Мы видим, что цифра 2 подошла и, значит, можем ее записать на месте единиц частного. 48-48=0, деление выполнено без остатка.

 Значение частного чисел 768 и 24 равно 32.

- Найдем значение частного чисел 15344 и 56.

Первое неполное делимое – 153 сотни, значит, в частном будут три цифры.

Определим первую цифру частного. Разделим 153 на 56. Чтобы легче было подобрать цифру частного, разделим 153 не на 56, а на 50. Для этого разделим 153 на 10, будет 15 (остаток 3). И 15 разделим на 5, будет 3. 3 – это пробная цифра частного. Помните: ее нельзя сразу записывать в частном, а нужно сначала проверить, подойдет ли она. Умножим 56*3=168. 168 больше, чем 153. Значит, в частном будет меньше, чем 3. Проверим, подойдет ли цифра 2. Умножим 56*2=112. 153-112=41. Остаток меньше делителя, значит, цифра 2 подходит, ее можно записать на месте сотен в частном.

Образуем следующее неполное делимое. 153-112=41. Переписываем в ту же строку цифру 4, следующую за первым неполным делимым. Получаем второе неполное делимое  414 десятков. Разделим 414 на 56. Чтобы удобнее было подобрать цифру частного, разделим 414 не на 56, а на 50. 414:10=41(ост.4). 41:5=8(ост.1). Помните: 8 – это пробная цифра. Проверим ее. 56*8=448. 448 больше, чем 414, значит, в частном будет меньше, чем 8. Проверим, подойдет ли цифра 7. Умножим 56 на 7, получится 392. 414-392=22. Остаток меньше делителя. Значит, цифра подошла и в частном на месте десятков можем записать 7.

Пишем в строку с новым остатком 4 единицы. Значит следующее неполное делимое – 224 единицы. Продолжим деление. Разделим 224 на 56. Чтобы легче было подобрать цифру частного, разделим 224 на 50. То есть сначала на 10, будет 22 (остаток 4). И 22 разделим на 5, будет 4 (остаток 2). 4 – это пробная цифра, проверим ее, подойдет ли она. 56*4=224. И мы видим, что цифра подошла. Запишем 4 на месте единиц в частном. 224-224=0, деление выполнено без остатка.

Значение частного чисел 15344 и 56 равно 274.

Пример на деление с остатком

Чтобы провести аналогию, возьмем пример, похожий на пример выше, и отличающийся лишь последней цифрой

- Найдем значение частного чисел 15345:56

Делим сначала точно так же, как в примере 15344:56, пока не дойдем до последнего неполного делимого 225. Разделим 225 на 56. Чтобы легче было подобрать цифру частного, разделим 225 на 50. То есть сначала на 10, будет 22 (остаток 5). И 22 разделим на 5, будет 4 (остаток 2). 4 – это пробная цифра, проверим ее, подойдет ли она. 56*4=224. И мы видим, что цифра подошла. Запишем 4 на месте единиц в частном. 225-224=1, деление выполнено с остатком.

Значение частного чисел 15345 и 56 равно 274 (остаток 1).

Деление с нулем в частном

Иногда в частном одним из чисел получается 0, и дети зачастую пропускают его, отсюда неправильное решение. Разберем, откуда может взяться 0 и как его не забыть.

- Найдем значение частного чисел 2870:14

Первое неполное делимое - 28 сотен. Значит в частном будет 3 цифры. Ставим под уголок три точки. Это важный момент. Если ребенок потеряет ноль, останется лишняя точка, которая заставит задуматься, что где-то упущена цифра.

Определим первую цифру частного. Разделим 28 на 14. Подбором получается 2. Проверим, подойдет ли цифра 2. Умножим 14*2=28. Цифра 2 подходит, ее можно записать на месте сотен в частном. 28-28=0.

Получился нулевой остаток. Мы обозначили его розовым для наглядности, но записывать его не нужно. Переписываем в строку с остатком цифру 7 из делимого. Но 7 не делится на 14 с получением целого числа, поэтому записываем на месте десятков в частном 0.

Теперь переписываем в ту же строку последнюю цифру делимого (количество единиц).

70:14=5 Записываем вместо последней точки в частном цифру 5. 70-70=0. Остатка нет.

Значение частного чисел 2870 и 14 равно 205.

Деление нужно непременно проверить умножением.

Примеры на деление для самопроверки

Найдите первое неполное делимое и определите количество цифр в частном.

3432:66          2450:98         15145:65      18354:42     17323:17

Усвоили тему, а теперь потренируйтесь решить несколько примеров столбиком самостоятельно.

1428 : 42           30296 : 56           254415 : 35        16514 : 718

2924 : 68          136576 : 64          710278 : 91        15830 : 293

 

7gy.ru

Как Объяснить Ребенку + ТОП-10 Примеров

СохранитьSavedRemoved 0

Ребенок и математика

Дети во 2-3 классе осваивают новое математическое действие – деление. Школьнику непросто вникнуть в суть данного математического действия, поэтому ему необходима помощь родителей. Родителям нужно понимать, как именно преподносить ребенку новую информацию. ТОП-10 примеров расскажут родителям о том, как нужно учить детей делению чисел столбиком.

Содержание этой статьи:

Обучение делению в столбик в форме игры

Дети устают в школе, они устают от учебников. Поэтому родителям нужно отказаться от учебников. Подавайте информацию в форме увлекательной игры. Можно поставить задачи таким образом:

  • Организуйте ребенку место для обучения в форме игры. Посадите его игрушки в круг, а ребенку дайте груши или конфеты. Предложите ученику разделить 4 конфеты между 2 или 3 куклами. Чтобы добиться понимания со стороны ребенка, постепенно прибавляйте количество конфет до 8 и 10. Даже если малыш будет долго действовать, не давите и не кричите на него. Вам потребуется терпение. Если ребенок делает что-то неправильно, исправляйте его спокойно. Затем, как он завершит первое действие деления конфет между участниками игры, попросит его вычислить, сколько конфет досталось каждой игрушке. Теперь вывод. Если было 8 конфет и 4 игрушки, то каждой досталось по 2 конфеты. Дайте ребенку понять, что разделить – это значит распределить равное количество конфет всем игрушкам.
  • Обучать математическому действию можно с помощью цифр. Дайте ученику понять, что цифры можно квалифицировать, как груши или конфеты. Скажите, что количество груш, которое требуется разделить – это делимое. А количество игрушек, на которых приходятся конфеты – это делитель.
  • Дайте ребенку 6 груш. Поставьте перед ним задачу: разделить количество груш между дедушкой, собакой и папой. Затем попросите его поделить 6 груш между дедушкой и папой. Объясните ребенку причину, по которой получился неодинаковый результат при делении.
  • Расскажите ученику о делении с остатком. Дайте ребенку 5 конфет и попросите его раздать их поровну между котом и папой. У ребенка останется 1 конфета. Расскажите ребенку, почему получилось именно так. Данное математическое действие стоит рассмотреть отдельно, так как это может вызвать сложности.
Деление чисел

Деление чисел

Обучение в игровой форме может помочь ребенку быстрее понять весь процесс деления чисел. Он сможет усвоить, что наибольшее число делится на наименьшее или наоборот. То есть, наибольшее число – это конфеты, а наименьшее – участники. В столбике 1 числом будет количество конфет, а 2 – количество участников.

Не перегружайте ребенка новыми знаниями. Обучать нужно постепенно. Переходить к новому материалу нужно тогда, когда предыдущий материал закреплен.

вернуться к меню ↑

Обучение делению в столбик при помощи таблицы умножения

Ученики до 5 класса смогут разобраться в делении быстрее, при условии того, что они хорошо знают умножение. Родителям необходимо разъяснить, что деление имеет сходство с таблицей умножения. Только действия противоположны. Для наглядности нужно привести пример:

  • Скажите ученику, чтобы он произвол умножение значений 6 и 5. Ответ – 30.
  • Подскажите школьнику, что число 30 является результатом математического действия с двумя числами: 6 и 5. А именно, результатом умножения.
  • Разделите 30 на 6. В результате математического действия получится 5. Школьник сможет убедиться в том, что деление – это то же, что и умножение, но наоборот.

Можно воспользоваться таблицей умножения для наглядности деления, если ребенок хорошо ее усвоил.

Таблица умножения

Таблица умножения

вернуться к меню ↑

Обучение делению в столбик в тетради

Начинать обучение нужно тогда, когда ученик понял материал о делении на практике, с помощью игры и таблицы умножения.

Пример деления

Пример деления

Нужно начинать делить таким образом, применяя простые примеры. Так, деление 105 на 5. Объяснять математическое действие нужно подробно:

  • Напишите в тетради пример: 105 разделить на 5.
  • Запишите это, как при делении в столбик.
  • Расскажите, что 105 – делимое, а 5 – делитель.
  • С учеником определите 1 цифру, которая допускает деление. Значение делимого – 1, эта цифра не делится на 5. А вот второе число – 0. В итоге получится 10, это значение допускается разделить данный пример. Число 5 два раза входит в число 10.
  • В столбике деления, под числом 5, напишите цифру 2.
  • Попросите ребенка число 5 умножить на 2. По итогу умножения получится 10. Это значение нужно записать под числом 10. Далее нужно написать в столбике знак вычитания. От 10 нужно отнять 10. Получится 0.
  • Запишите в столбике число, получившееся в результате вычитания – 0. У 105 осталось число, которое не участвовало в делении – 5. Это число нужно записать.
  • В итоге получится 5. Это значение нужно разделить на 5. Результат – цифра 1. Это число нужно записать под 5. Результат деления – 21.

Родителям нужно объяснить, что это деление не имеет остатка.

Начать деление можно с цифр 6,8,9, затем переходить к 22, 44, 66, а после к 232, 342, 345, и так далее.

Еще один пример деления

Еще один пример деления

вернуться к меню ↑

Обучение делению с остатком

Когда ребенок усвоит материал о делении, можно усложнять задачу. Деление с остатком – это следующая ступень обучения. Объяснять нужно на доступных примерах:

  • Предложите ребенку разделить 35 на 8. Запишите в столбик задачу.
  • Чтобы ребенку было максимально понятно, можно показать ему таблицу умножения. В таблице наглядно видно, что в число 35 входит 4 раза число 8.
  • Запишите под числом 35 число 32.
  • Ребенку нужно от 35 вычесть 32. Получится 3. Число 3 является остатком.
Деление с остатком

Деление с остатком

вернуться к меню ↑

Простые примеры для ребенка

На этом же примере можно продолжить:

  • При делении 35 на 8 получается остаток 3. К остатку нужно дописать 0. При этом после цифры 4 в столбике нужно поставить запятую. Теперь результат будет дробным.
  • При делении 30 на 8 получается 3. Эту цифру нужно записать после запятой.
  • Теперь нужно под значением 30 написать 24 (результат умножения 8 на 3). В итоге получится 6. К цифре 6 тоже нужно дописать ноль. Получится 60.
  • В число 60 помещается цифра 8 входит 7 раз. То есть, получится 56.
  • При вычитании 60 от 56 получается 4. К этой цифре тоже нужно подписать 0. Получается 40. В таблице умножения ребенок может увидеть, что 40 – это результат умножения 8 на 5. То есть, в число 40 цифра 8 входит 5 раз. Остатка нет. Ответ выглядит так – 4,375.

Данный пример может показаться ребенку сложным. Поэтому нужно много раз делить значения, у которых будет остаток.

вернуться к меню ↑

Обучение делению с помощью игр

Родители могут использовать игры на деление для обучения школьника. Можно дать ребенку раскраски, в которых нужно определить цвет карандаша путем деления. Нужно выбирать раскраски с легкими примерами, чтобы ребенок мог решить примеры в уме.

Картинка будет поделена на части, в которых будут результаты деления. А цвета, которые нужно использовать, будут примерами. Например, красный цвет помечен примером: 15 разделить на 3. Получится 5. Нужно найти часть картинки под этим номером и раскрасить ее. Математические раскраски увлекают детей. Поэтому родителям стоит попробовать данный способ обучения.

Веселый способ изучить деление чисел

Веселый способ изучить деление чисел

вернуться к меню ↑

Обучение делению столбиком наименьшего числа на наибольшее

Деление данным методом предполагает, что частное будет начинаться с 0, а после него будет стоять запятая. Чтобы ученик корректно усвоил полученную информацию, ему необходимо привести такого плана пример:

  • Дайте ребенку пример: 1 разделить на 8.
  • Подскажите, что ребенку нужно поставить 0 в частное, а после запятую.
  • Теперь можно приступать к обычному делению.
  • По итогу решения должен получиться такой ответ: 0,125.
вернуться к меню ↑

Обучение делению столбиком десятичных дробей с запятой

Деление десятичных дробей может запутать ребенка из-за постановки запятой.

Деление десятичных дробей

Деление десятичных дробей

Чтобы ребенок сориентировался в этом математическом действие, ему необходимо разложить информацию «по полочкам»:

  • Десятичная дробь допускает деление не только на десятичную дробь, но и на целое значение. В таких задачах необходимо действовать, как с обычными примерами. Только когда у делимого закончатся значения до запятой, ее нужно поставить в частное. Далее деление тоже протекает привычным способом.
  • Десятичные дроби так же делятся на десятичные дроби. В этом математическом действии нужно убрать запятые у второго числа. Для этого требуется перенести ее вправо в обоих значениях на то количество цифр, которое отделено у делителя.
вернуться к меню ↑

Обучение делению чисел столбиком с нолями

Деление чисел с нолями идентично обычному делению. Родителям нужно объяснить ребенку основные нюансы:

  • Расскажите, что если в конце делимого и делителя есть ноли, то их можно зачеркивать в уме. Предложите школьнику зачеркивать их простым карандашом для понимания. Дальше нужно делить, как и в обычных примерах. Например, если 1200 нужно разделить на 400, то ребенок может сократить пример, убрав два 0 у обоих чисел. А в примере деления 15600 на 560 можно сократить только по одному 0.
  • Объясните ученику, что если 0 есть только в делителе, то его нельзя сокращать.

Чтобы лучше усваивать материал, можно решить простой пример деления:

  • Запишите в тетради пример: 100 разделить на 10. Это легкий пример, так как при сокращении нолей он представлен так: 10 разделить на 1.
  • Ребенку следует под делителем написать цифру 10. Так как при умножении 1 на 10 получается требуемый результат. Под делимым ребенку нужно записать 10. Остатка у этого примера нет.

Предложите ребенку легкие примеры такого типа:

  • 200 разделить на 20;
  • 300 разделить на 30;
  • 400 разделить на 40;
  • 500 разделить на 50;
  • 600 разделить на 60;
  • 700 разделить на 70.

Далее можно переходить к сложным примерам. Но только после того, как ребенок усвоит результат.

вернуться к меню ↑
ВИДЕО: Почему нельзя делить на ноль
вернуться к меню ↑

Обучение делению столбиком в уме

Родители могут помочь ребенку научиться делить в уме. Это может пригодиться им не только в школе, но и в дальнейшей жизни. В уме дети считают тоже столбиком. Это удобно и знакомо. У детей развито воображение, поэтому они смогут быстро освоить технику. Приступать к обучению деления столбиком в уме нужно тогда, когда ребенок без труда справляется с делением в тетради. Обучение:

  • Расскажите школьнику о том, что делить столбиком можно не только в тетради, но и в уме.
  • Объясните ученику о том, что частное можно разложить на составляющие.
  • Значение 3647необходимо поделить на 7. Нужно показать частное как сумму чисел 3500 и 147. Значение 3500 самое оптимальное, так как его можно поделить на 7, не имея остатка. В результате деления 3500 на 7 получается 500, а при делении 147 на 7 получается 21. Числа 500 и 21 нужно сложить, в результате получится 521. Данное число является ответом в примере деления 3647 на 7.

Ребенок не сразу может освоить эту технику деления. Все зависит от родителей. Их задача заключается в помощи ребенку без давления.

вернуться к меню ↑
ВИДЕО: Как научиться делить в уме
вернуться к меню ↑

Обучение делению многочленов

В 5-6 классе у детей появляется новое сложное математической действие. Деление многочленов.

Деление многочленов

Деление многочленов

Детям нужно рассказать тонкости деления данного формата:

  • По итогу деления может быть остаток, так же он может отсутствовать.
  • Чтобы совершать вычитание, нужно дополнять в многочлен недостающей степенью функции, умноженной на 0.
  • Делайте преобразование многочлена с помощью выделения повторяющихся многочленов или двучленов. При сокращении получится ответ без остатка.

Рекомендации для легкого обучения ребенка

Чтобы ребенок быстро осваивал новый математический материал, его необходимо заранее подготовить. Важно научить трехлетнего ребенка понятиям «целое» и «часть». Ребенка важно научить восприятию целого, как неразделимого и частей целого, как самостоятельного объекта.

Также важно пробудить интерес к предмету у ребенка. Этому способствуют аналоги математических игр в процессе игры. Наблюдение за природой тоже можно преобразовать в увлекательную математику.

Родителям нужно тренировать наблюдательность детей. Это ключ к пониманию математики и других предметов.

Можно обзавестись полезными таблицами умножения и деления. Плакаты можно повесить в комнате ребенка. Тогда он может в любой момент ими воспользоваться и справиться с задачами.

вернуться к меню ↑
ВИДЕО: Деление в столбик

slovami.net

Как объяснить ребенку деление в столбик?

  • Если вы сами умеете это делать, так и покажите ребенку. Сначала пишите делимое, потом делитель, и начинайте говорить, что сначала ищешь самое большое число, на которое нужно умножить делитель, чтобы получилось вот отсюда (ну, к примеру, если вы делите 324 на 4, то рисуете скобку-вот, мол, смотри-2 не делится на 4, так?Оно же меньше? Значит, еще одну цифирь прихватываем. Ага, получается уже 32. Ну, это на 4 делится. Сколько будет-8. Пишем восьмерку под чертой. Теперь смотри-пишем 32, и снизу то, что получилось, если нашу 4 умножить на восьмерку. 32-32=0. То есть из 324 у тебя убежало 32, осталось-4. 4 на 4-делится, получается 1. И ее до кучи припишем рядом с 8-мы же получили их одинаковым путем, большую цифру поделили на 4, правильно? Вот теперь глядим все в целом - 324 делить на 4=81.

  • Объяснить ребенку процесс деления в столбик можно таким способом: для начала лучше научиться делить числа без остатка, так будет проще понять ребенку. Заодно проверьте знания таблицы умножения, ведь если ее не знать тогда и делить будет сложно. Вот пример как можно научить ребенка делению:

    Думаю, после такого подробного объяснения ваш ребенок легко усвоит как нужно делить в столбик. ведь в этом нет ничего сложного.

  • Если ребенок уже в уме умножать и делить,то деление в столбик будет делом лишь некоторого времени.Главное при первых начинаниях объяснять ребенку,что деление происходит по порядку,начиная с последней цифры и если эта цифра больше того числа,на которое делим,то вписываем результат под черту и делаем деление до тех пор,пока не закончатся цифры.Если же число попадается меньше,то нужно брать уже соседнюю цифру,тогда получится двухзначное число,которое нам и нужно.А дальше уже нюансы.Вначале научить простым азам,а после само пойдет.

  • Все верно, Обучение делению в столбик начинаем с азов. С того, что ребенок должен усвоить саму суть процесса деления. То есть нахождения числа (частного), которое будучи умноженным на делитель даст нам делимое.

    Если он это понимает, то тогда можно объяснять на простейших примерах устного деления, например, 55:5 или 64:4, 48:3 и т.д. Сперва подбором частного, попутно объясняя, что это же можно сделать по частям. 55 - это 50 и 5, сперва делим 50 на 5 , равно 10, затем 5 на 5 =1 и складываем полученные числа. Одновременно поэтапно записываем все шаги. Можно не в общепринятой, а в свободной форме, только потом показав, как это удобно оформить столбиком. А уж затем переходим к более сложным примерам вида 256:16 и еще, еще сложнее. Заметила, что детей часто затрудняет не процесс, а именно эти непонятные столбики.

    Иными словами главное СУТЬ, а форма потом.

    Кстати, форма записи деления в столбик в некоторых странах отличается от привычной для нас.

  • info-4all.ru

    Деление «в столбик» — теперь по-русски :) – Вадим Стеркин

    Математика в 3 классе невозможна без поисковых технологий :) Просматривая статистику посещений своего блога осенью 2008 г, я обратил внимание, что с начала сентября в него ежедневно приходят из Google несколько человек по запросу деление в столбик. Действительно, я когда-то писал о том, как делят в столбик американцы. Как ни странно, именно эта запись стояла первой в списке результатов поисковика, но она ничем не помогала бедным школьникам и их родителям.

    Беглый просмотр других результатов поисковика не выявил алгоритма деления в первой десятке, и даже в русской Википедии статья еще ждала своего автора. Я решил восполнить пробел, не претендуя на полноту изложения материала или профессиональный педагогический подход.

    Итак, дорогие школьники, сегодня мы будем делить 861 на 7 в столбик. Если вы еще не знаете, в любой операции деления должно быть делимое, делитель и частное. В нашем случае 861 – делимое, 7 – делитель, а результат деления – частное. Его и будем искать.

    Для начала записываем рядом делимое и делитель, затем разделяем их «уголком».

    Теперь нужно внимательно посмотреть на цифры делимого и, двигаясь слева направо, найти в нем наименьшее число, которое больше делителя. Чисел тут три: 8, 86 и 861. Из них наименьшим является 8. Теперь нужно ответить на главный вопрос! Сколько раз наш делитель (7) содержится в числе 8? Один раз. Поэтому смело пишем 1 под чертой – это первая цифра частного, которое мы пытаемся найти.

    А где же столбик? Сейчас будет :) Теперь умножаем 7 на 1 и получаем 7. Записывем полученный результат под первым числом делимого и вычитаем в столбик, то есть из 8 вычитаем 7. Получаем 1.

    Если вы все сделали правильно, результат вычитания должен быть меньше делителя. Если больше, значит вы неправильно определили, сколько раз 7 содержится в 8. Поскольку результат вычитания меньше делителя, нам нужно его увеличить для продолжения нашего нелегкого труда. И делать это мы будем за счет следующей цифры делимого. Поскольку 8 мы уже использовали, берем 6 и приписываем к единице.

    Теперь отвечаем на уже знакомый вопрос. Сколько раз 7 содержится в 16? Два раза. Приписываем двойку к единице под чертой — это вторая цифра частного. Умножаем 7 на 2, получаем 14 и записываем результат под 16.

    Дальше идем по уже знакомому пути. Вычитаем 14 из 16, получаем 2 (2 меньше 7, значит все сделано правильно). Используем третью и последнюю цифру делимого – 1, сносим ее вниз и приписываем к двойке, получая 21.

    Снова отвечаем на знакомый вопрос. Сколько раз 7 содержится в 21? Три раза. Пишем тройку под чертой. Умножаем 7 на 3, получаем 21 и записываем в столбик под 21. Вычитаем 21 из 21, получаем 0. Ура, деление выполнено без остатка! Ответ – 123.

    Если вы использовали все цифры делимого, а ноль так и не получился, значит либо деление без остатка невозможно, либо вы ошиблись в арифметике. Выполните проверку… при помощи калькулятора – Пуск – Выполнить – calc.

    Конец урока :)

    www.outsidethebox.ms

    Деление и умножение в столбик, правила, примеры видео

    Умножение и деление однозначных чисел не составит труда для любого школьника, выучившего таблицу умножения. Она входит в программу математики за 2 класс. Другое дело – когда необходимо произвести математические действия с многозначными числами. Начинают такие действия на уроках математики в 3 классе. Разбираем новую тему «Деление и умножение в столбик»

    Умножение многозначных чисел

    Делить и умножать сложные числа проще всего столбиком. Для этого нужно разряды числа: сотни, десятки, единицы:

    235 = 200 (сотни) + 30 (десятки) + 5 (единицы).

    Это нам понадобится для правильной записи чисел при умножении.

    При записи двух чисел, которые нужно перемножить, их записывают друг под другом, размещая числа по разрядам (единицы — под единицами, десятки под десятками). При умножении многозначного числа на однозначное трудностей не возникнет:

    умножение в столбик

    Правило умножения двухзначных чисел гласит, что сначала умножается первое из чисел на последнюю из цифр второго ряда (стоящую в разряде единиц), затем – оно же – на цифру из разряда десятков.

    Запись ведется так:умножение в столбикВычисление ведут с конца – с разряда единиц. При умножении на первую цифру – из разряда единиц – запись тоже ведут с конца:

    • 3 х 5 = 15, записываем 5 (единицы), десятки (1) запоминаем;
    • 2 х 5 = 10 и 1 десяток, который мы запомнили, всего 11, записываем 1 (десятки), сотни (1) запоминаем;
    • поскольку дальше разрядов у нас в примере нет, записываем сотни (1 – которую запоминали).

    Следующее действие – умножаем на вторую цифру (разряд десятков):

    •  3 х 1 = 3;
    • 2 х 1 = 2.

    Поскольку умножали мы на цифру из разряда десятков, записывать начнем так же, с конца, начиная со второго места справа (там, где разряд десятков).

    Запомнить правила умножения столбиком несложно:

    1.  записывать столбиком умножение нужно по разрядам;

    2. вычисления производить, начиная с единиц;

    3. записывать итог по разрядам – если умножаем на цифру из разряда единиц – запись начинаем с последнего столбика, из разряда – десятков – с этого столбца и ведем запись.

    Правило, действующее для умножения в столбик на двухзначное число, действует и для чисел с большим количеством разрядов.

    умножение в столбик

    Чтобы легче было запомнить правила записи примеров умножения многозначных чисел в столбик, можно сделать карточки, выделив разными цветами разные разряды.

    Если производится в столбик умножение чисел с нулями на конце, их не принимают во внимание при вычислении, а запись ведут так, чтобы значащая цифра была под значащей, а нули остаются справа. После проведения вычислений их количество дописывают справа:

    умножение в столбик

    метод трахтенберга

    Математик Яков Трахтенберг разработал систему быстрого счета. Метод Трахтенберга облегчает умножение, если применять определенную систему вычислений. Например, умножение на 11. Для получения результата нужно прибавить цифру к соседней:

    2,253 х 11 = (0 + 2) (2 + 2) (2 + 5) (5 + 3) (3 + 0) = 2 + 4 + 7 + 8 + 3 = 24,783.

    Доказать истинность просто: 11 = 10 + 1

    2,253 х 10 + 2,253 = 22,530 + 2,253 = 24,783.

    Алгоритмы вычислений для разных чисел разные, но они позволяют производить вычисления быстро.

    Видео «Умножение столбиком»

    Деление многозначных чисел

    Деление столбиком может показаться детям сложным, однако запомнить алгоритм несложно. Рассмотрим деление многозначных чисел на однозначное число:215 : 5 = ?Записывается вычисление следующим образом:деление в столбикПод делителем будем записывать результат. Деление выполняется следующим образом: сравниваем крайнюю левую цифру делимого с делителем: 2 меньше 5, разделить 2 на 5 мы не можем, поэтому берем еще одну цифру: 21 больше 5, при делении получается: 20 : 5 = 4 (остаток 1)

    Сносим к полученному остатку следующую цифру: получаем 15. 15 больше 5, делим: 15 : 5 = 3

    Решение будет выглядеть таким образом:

    деление в столбик

    Так производится деление без остатка. По тому же алгоритму производится деление в столбик с остатком с той лишь разницей, что в последней записи будет указан не ноль, а остаток.

    Если необходимо произвести деление трехзначных чисел в столбик на двухзначное, порядок действий будет таким же, как при делении на однозначное число.

    Приведем примеры на деление:

    деление в столбикАналогично проводится вычисление при делении многозначного числа на двузначное с остатком: 853 : 15 = 50 и ( 3 ) остатокделение в столбикОбратите внимание на эту запись: если при промежуточных вычислениях в результате получается 0, но пример не решен до конца, ноль не записывается, а сразу сносится следующая цифра, и вычисление производится дальше.

    Поможет усвоить правила деления многозначных чисел в столбик видеоурок. Запомнив алгоритм и проследив последовательность записи вычислений, примеры на умножение и деление в столбик в 4 классе уже не будут казаться такими сложными.

    Важно! Следите за записью: разряды должны записываться под разрядами, в столбик.

    Видео «Деление в столбик»

    Если во 2 классе ребенок выучил таблицу умножения, примеры на умножение и деление двузначного или трехзначного числа на уроках математики за 4 класс не вызовет у него трудностей.

    Читайте так же:

    Математика: сложение обыкновенных дробей

    Математика: вычитание обыкновенных дробей

    Быстрый способ выучить таблицу умножения

     

    razvitiedetei.info

    Как объяснить деление в столбик

    Деление столбиком проходят в третьем классе исходной школы. Взрослому кажется, что ничего здесь трудного нет. Но ребенок может не осознать материал на уроке либо пропустить занятия из-за болезни. Тогда задача родителей – максимально внятно донести информацию до малыша, дабы отставание в школе не усугубилось. Проявите такт и терпение, чай примитивные вещи неизменно дюже трудно делать в 1-й раз.

    Вам понадобится

    • — ручка;
    • — бумага для записей.

    Инструкция

    1. Вначале проверьте навыки ребенка в умножении. Если ребенок нетвердо знает таблицу умножения, то с делением у него тоже могут быть задачи. Тогда при объяснении деления дозволено позволить подглядывать в шпаргалку, но таблицу все-таки придется выучить.

    2. Начните с самого простого – деление числа на однозначное число. Проверьте, дабы в результате получался без остатка, напротив малыш может запутаться. Возьмите, к примеру, 372 и предложите поделить на 6 частей.

    3. Запишите делимое и делитель через разделительную вертикальную черту. Под делителем вы будете записывать результат — частное, отделив его горизонтальной чертой. Возьмите первую цифру числа 372 и спросите у ребенка, сколько раз число шесть «помещается» в тройке. Положительно, нисколечко.

    Как объяснить деление в столбик

    4. Тогда возьмите теснее две цифры — 37. Для наглядности дозволено выделить их уголком. Вновь повторите вопрос – сколько раз число шесть содержится в 37. Дабы сосчитать стремительно, сгодится таблица умножения. Подберите результат совместно: 6*4 = 24 – вовсе непохоже; 6*5 = 30 – близко к 37. Но 37-30 = 7 – шесть «поместится» еще раз. Наконец, 6*6 = 36, 37-36 = 1 – подходит. Первая цифра частного обнаружена – это 6. Напишите ее под делителем.

    Как объяснить деление в столбик

    5. Запишите 36 под цифрой 37, подведите чертой. Для наглядности в записи дозволено применять знак вычитания. Под чертой поставьте остаток – 1. Сейчас «спустите» следующую цифру числа, двойку, к единице – получилось 12. Объясните ребенку, что цифры неизменно «спускаются» по одной. Вновь спросите, сколько «шестерок» содержит 12. Результат – 2, на данный раз без остатка. Напишите вторую цифру частного рядом с первой. Окончательный итог – 62.

    Как объяснить деление в столбик

    6. Также детально разглядите случай деления с остатком. Скажем, 167/6 = 27, остаток 5. Скорее каждого, ваш отпрыск про примитивные дроби пока ничего не слышал. Но если он будет задавать вопросы, что делать с остатком дальше, дозволено объяснить на примере яблок. 167 яблок поделили между шестью людьми. Всем досталось 27 штук, и пять яблок остались неподеленными. Дозволено поделить и их, разрезав всякое на шесть долек и раздав поровну. Всему человеку досталась одна долька от всякого яблока – 1/6. А потому что яблок было пять штук, то и долек у всего оказалось по пять – 5/6. То есть итог дозволено записать так: 27 5/6.

    Как объяснить деление в столбик

    7. Для закрепления информации разберите еще три примера деления:1) Первая цифра делимого содержит делитель. Скажем, 693/3 = 231.2) Делимое заканчивается на нуль. Скажем, 1240/4 = 310.3) Число содержит нуль в середине. Скажем, 6808/8 = 851.Во втором случае дети изредка забывают дописать последнюю цифру результата – 0. А в третьем, бывает, перескакивают через нуль.

    Как объяснить деление в столбик

    Определенные значения усваиваются детьми гораздо отличнее, чем абстрактные. Как объяснить ребенку , что такое две третьих? Представление дроби требует специального представления. Есть некоторые способы, помогающие понять, что же такое нецелое число.

    Вам понадобится

    • — особое лото;
    • — яблоко и конфеты;
    • круг из картона, состоящий из нескольких частей;
    • — мелок.

    Инструкция

    1. Постарайтесь заинтересовать ребенка. На прогулке поиграйте в специальные классики. Если в обыкновенные вам прыгать теснее наскучило, а счет ребенком освоен классно — испробуйте такой вариант. Начертите классики мелом на асфальте так, как показано на рисунке и объясните малышу, что прыгать дозволено так: 1 — 2 — 3… , а дозволено и так 1 — 1,5 — 2 — 2,5 … Детям дюже нравится играть и так они отличнее понимают, что между числами, есть еще промежуточные значения — части. Это ваш 1-й и крепкий шаг на пути к постижению дробных чисел. Красивое наглядное пособие.

    2. Возьмите целое яблоко и предложите его единовременно двум детям. Они сразу вам ответят, что такое нереально. Тогда разрежьте яблоко и предложите им вновь. Сейчас все в порядке. всякому досталось по идентичной половине яблока. Это и есть части одного целого.

    3. Предложите ребенку поделить четыре конфеты с вами напополам. Он легко это сделает. Тогда достаньте еще одну и предложите сделать тоже самое. Внятно, что целая конфета не может достаться сразу вам и ребенку . Выход дозволено обнаружить, разрезав конфету напополам. Тогда у всего получиться по две целых конфеты и одна половинка.

    4. Для детей постарше используйте разрезной круг. Поделить его дозволено на 2, 4, 6 либо 8 частей. Предлагаем детям взять круг. После этого разделяем его на две половинки. Из 2-х половинок восхитительно получится круг, даже если обменяться половинкой с соседом по парте (круги обязаны быть идентичного диаметра). Заем всякую половинку разделяем еже на половину. Получается, что круг может состоять и их 4 частей. А всякая половина получается из 2-х половин. После этого на доске записываем это в виде дроби . Поясняя, что такое числитель (сколько частей взяли) и знаменатель (на сколько частей каждого поделили). Так детям легче усвоить непростое представление — дробь.

    Полезный совет Непременно применяйте наглядные пособия в объяснении абстрактного представления.

    Раздел «Умножение и деление» – один из особенно трудных в курсе математики исходных классов. Ее дети постигают обыкновенно в возрасте 8-9 лет. В это время у них довольно отлично развита механическая память, следственно запоминание происходит стремительно и без специальных усилий.

    Инструкция

    1. Помните, что у некоторых детей появляются трудности при постижении таблицы деления . Постарайтесь сделать все допустимое, дабы подмогнуть своему ребенку с ними совладать.

    2. Избегайте «зубрежки». Дабы ребенку было легче и увлекательнее исполнить задание, делайте это с ним в игровой форме. Для этого хорошо подойдут конфеты, пуговицы либо монеты. С их подмогой ваш ребенок будет не только постигать деление, но и развивать мелкую моторику в процессе действий с мелкими предметами.

    3. Испробуйте постигать таблицу деления с ребенком с конца. Таким образом, происходит больше добротное заучивание деления на 9, 8, 7 и 6. Когда вы спуститесь до середины таблицы, учить теснее фактически ничего не придется, а самое трудное будет пройдено. Не забывайте почаще хвалить ребенка и чем-нибудь поощрять.

    4. Предварительно сделайте картонные карточки с вопросами из таблицы деления . Поочередно доставайте вразнобой из колоды по одной карточке и умоляете, дабы ребенок давал вам на нее результат. Тренируйтесь весь день, это поможет развить у ребенка зрительную память. Со временем он обучится дюже стремительно давать правильный результат на всякое действие.

    5. Проводите для ребенка маленькие проверки. Заведите особую тетрадь, в которую будете писать для него задания. Повседневно пишите в нее примеры из всякого столбика таблицы деления , но без результата. Ребенок должен самосильно исполнить решение и написать положительный результат. Такая игра ему дюже понравится, и он будет с удовольствием исполнять все действия.

    6. Во время прогулок приводите разные примеры применения таблицы умножения в жизни. Умоляете, дабы ребенок тоже приводил такие примеры, это поможет развить ему мышление.

    7. Существуют особые программы – тренажеры, которые помогут исследовать ребенку таблицу деления . На стене в его комнате повесьте плакат с таблицей деления , дабы он в всякий момент сумел обратится к нему за поддержкой.

    jprosto.ru

    Как объяснить ребенку деление (2 класс)?

    Как научить ребенка делению во 2 классе?

    Деление чисел с остатком или без него является самым трудным из четырех арифметических действий. С основами этого процесса ребенок знакомится еще в самом раннем детстве иногда малышу приходится поровну делить конфеты между плюшевым мишкой и куклой. Правильно разделить угощение на несколько кучек для ребенка обычно труда не составляет.

    Однако позже могут возникнуть проблемы. Школьные задачи не всегда подразумевают деление нескольких предметов на количество людей. Это могут быть, например, задания на скорость – и часто они вводят ребенка в ступор.

    В таком случае научить принципам деления числа обязаны родители. Математика не терпит пустоты – если ребенок что-то пропустил или просто не усвоил информацию, это может сильно затруднить изучение дальнейших тем, а также других дисциплин в более поздних классах.

    Начальное обучение делению

    1. Чем раньше родители объяснят ребенку принципы деления с остатком или без него – тем лучше он их усвоит. А чтобы процесс прошел легко, нужно это сделать в форме игры. Например, дать шесть конфет и попросить их поделить поровну между куклой, киской и папой. А теперь – между мамой и бабушкой. Естественно, у ребенка получатся разные результаты. Важно объяснить, почему так получилось.
    2. Следует учесть, что для обучения лучше использовать бытовые, знакомые малышу предметы: игры со счетными палочками или бумажными квадратиками вряд ли будут ему интересны.
    3. Следующим шагом можно попробовать объяснить деление с остатком – принцип тот же: игра. Пусть кроха попробует пятью орехами угостить Мишу и Свету. Он отдаст каждому по 2 орешка, а оставшийся сможет съесть сам.
    4. Теперь ребенок сможет понять сам принцип деления: большее число делится на меньшее. Конечно, взрослые-то знают, что так происходит не всегда, но для ребенка в возрасте от 5 до 8 лет этой информации будет достаточно.

    Обучение делению школьников младших классов

    Если ребенок все прекрасно усвоил в игровой форме, то в школе ему придется применить свои знания и умения на практике. Именно в это время отход от привычных категорий – конфет, кукол и прочего – может вызвать серьезные затруднения.

    1. В этом возрасте ребенок школьник должен уже знать первые три арифметических действия и уметь оперировать ими. Он должен понимать и знать таблицу умножения. Вот она, кстати, в некоторых случаях поможет объяснить ученику, что деление – это умножение наоборот. Родителю стоит сесть рядом с ребенком и, изучая напечатанную на обложке тетради таблицу умножения, объяснить, как это работает на практике. Например, 4х7=28. А если пойти наоборот?  Уточнить, на пересечении какого числа с цифрой 7 находится 28. С 4. Вот и разделили.
    2. Теперь ребенок должен сделать цифровую запись этого процесса: это способствует закреплению информации в памяти.

    Деление столбиком

    Лишь после того, как ученик освоил и хорошо запомнил предыдущие способы, можно переходить к делению столбиком, с остатком или без него.

    Вначале необходимо, чтобы ребенок понял и заучил название компонентов процесса деления:

    • делимое – то число, которое делят;
    • делитель – то, на что делят;
    • частное – конечный результат.

    Далее нужно показать форму записи при делении столбиком. К примеру, нужно поделить двузначное число на однозначное:

    • вначале пишется делимое – пусть это будет 98;
    • справа от него рисуют уголок, как перевернутую букву «Т», в нем записывают делитель – в нашем случае 7;
    • теперь определяют наименьшее число в делимом, которое делится на 7 – это 9;
    • цифра 7 в числе 9 может поместиться 1 раз – значит, в частном пишем 1;
    • теперь нужно умножить делитель 7 на первую цифру частного 1 – получится 7. Его надо записать под 9;
    • из 9 вычесть 7 – получится 2.

    Обратите внимание: полученная разность никогда не сможет быть равна или больше делителя. Если это произошло, значит, было неверно определено количество 7 в 9.

    • так как 2 на 7 не делится, сносят вниз следующую цифру из двузначного делимого – 8. Получили 28. Его можно поделить на 7 – получится 4;
    • эту цифру нужно записать рядом с 1 – получится 14. Это и будет частным в данном примере;
    • но правильно оформить решение все-таки нужно, поэтому 7 умножают на 4 – получают результат 28, который и пишут под 28. Вычитают 28 из 28 – получают 0. Его пишут под чертой, которой подводят итог решения.
    • в случае если остаток не равен нулю, то это – деление с остатком.

    В первый класс идет не только малыш – родители вместе с ним начинают и заканчивают школу. Учитель не всегда имеет возможность объяснить каждому ученику ту или иную тему. И вот тогда родители должны научить свое чадо, что такое умножение, деление с остатком двузначного числа на однозначное. При переходе в третий класс задание усложнится – научить нужно будет делению с остатком и трехзначного числа на двузначное. Главное, набраться терпения и не ругать ребенка из-за малейшей оплошности. Тогда все получится, и математика, возможно, станет любимым школьным предметом.

    Статьи по теме

    stranadetstva.ru